Editing GTA mission.ini

By

Darren Latham

Version 0.3	Last updated : 06-Jan-1997

Disclaimer : I am not responsible for any damage you cause when attempting to use the material in this FAQ. The information is provided as is, and is as correct as I can make it at the time of going to press.

If you find any mistakes, or, have any additional information then please let me know so I can update this document. All feedback is welcome. I can be contacted on the following E-Mail address : Darren@briarlea.softnet.co.uk. One last thing good luck. If you are trying to create missions for the demo then please throw yourself under a passing bus. You’ll be doing us all a favour.

There are two sections in each chapter/deathmatch thingy. The first is the location of all of the objects on the map (not the actual map itself), and the second is the actual mission code. Each section ends with a -1. I would not recommend messing about with the section headers. I’m not sure what they do as yet. I tried to add a new chapter to one of the cities by adding a whole new section in the mission.ini file, but it did not pick up the fact that there was a new section there.

Line numbers do not have to be sequential. It is currently unclear whether the program execution follows sequential line numbers. It seems reasonable but I have not performed a good enough analysis of the San Andreas missions as yet.

Some co-ordinates are multiplied by 64. This means that the co-ordinates are specified in pixels rather than tiles (thanks Michael).

Objects

All objects have the following properties, which are defined in the following order :

<line number> <optional 1> <(x, y, z) co-ordinates> <object type> <parameters>

The following section lists the object types and their parameters where known. For examples of their use havea look in mission.ini. I have not included the line numbers, or positions in my syntax definitions. The optional 1 determines whether an object is visible by default or not (in most cases but not all).

TELEPHONE 0 <direction telephone faces>

This places a telephone on the map at the co-ordinates specified. The telephone faces the direction given (i.e. The arrow points in the opposite direction).

Direction values : 0 - West, 256 - South, 512 - East, 768 - North.

DUMMY 0 <value>

This places an invisible marker on the map at the location given. Dummy markers are used to place things like sounds on the map.

Values : 0 - , 1 - , 2 - , 3 - ** Currently unknown, but may well be direction

�
TRIGGER <line number to goto> <value>

This places a trigger on the map. When activated the trigger starts program execution at the line number specified. There is also an additional value, but I have no information about this at present.

Values : 0 - , 1 - , 2 - ** Currently unknown

CARTRIGGER <line number to goto> <car ID>

This places a trigger on the map that fires when a car is entered. The car ID is the line number it is placed on the map at. The trigger will cause the code to start at the line number specified.

TARGET 0 0

This places some sort of place holder on the map. It might be used to drive vehicles and pedestrians around but I am currently only guessing.

TARGET_SCORE <value to reach> 0

This sets the score you must reach to finish the map. The object should be located at (0, 0, 0).

Values : 1000000 on the first map, 2000000 on the second etc.

MISSION_COUNTER <number of missions> 0

This sets the number of telephone messages there are. It is used to determine when the ‘there is work but you have got to find it’ message is displayed. The object should be located at (0, 0, 0).

Number of missions : 4 on the first map etc.

SECRET_MISSION_COUNTER <number of missions> 0

This sets the total number of secret missions there are on the map. The only thing I have found which increments the number of secrets found are the Kill Frenzies. This should really be called a Kill Frenzy counter. The object should be located at (0, 0, 0).

MISSION_TOTAL <number of missions> 0

This sets the total number of secret missions there are on the map. I’m not sure what denotes a secret mission, but it appears to be different to the ‘secrets’ displayed when you press pause. The object should be located at (0, 0, 0).

COUNTER <initial value> 0

This defines a counter which can be increased or decreased as code executes. The object should be located at (0, 0, 0).

�
POWERUP <type of powerup> <ammunition>

This places a crate on the map at the position specified. The contents of the crate can be specified, as well as the amount of ammunition in some cases. Specifying the amount of ammunition for objects which do not need it has not been tested and the results are undefined.

So far it looks as if you can place the powerups anywhere except in a building. (Can they be placed in passages?) If placed where a parked car exists you will have to drive the car to get to the object, which looks like a good way to hide powerups because you only see the car and not the crate. If placed on a startup position you will just start out right on top of a crate. If placed where a phone is, the phone will appear on top of the crate, but you can still get to the crate. Trees are offset sitting right on gridlines so you can put crates right next to them. Just placing an INFO SIGN will crash the game if you try and retrieve it. (You might have to provide a message for it?)

Powerup types :

Value�
Powerup�
�
Value�
Powerup�
�
1�
Pistol�
�
9�
Police bribe�
�
2�
Machine gun�
�
10�
Armour�
�
3�
Rocket launcher�
�
11�
Multiplier up�
�
4�
Flamethrower�
�
12�
Get out of jail free�
�
5�
Nothing�
�
13�
Extra life�
�
6�
Car speed up�
�
14�
Info sign.�
�
7�
Nothing�
�
15�
Extra life with different audio�
�
8�
Nothing�
�
�
�

Ammunition values:

Value�
Description�
�
0-99�
Ammunition amount�
�
100�
Unlimited kill frenzy�
�
>100 limited time kill frenzy�
5000 = 195 secs, 10000 = 395 secs�
�
1-32�
With information sign displays helpn in fxt file.�
�
�
�
�

FUTURE <value> <direction (probably)>

This acts as a future marker. It is not placed on the map until requested by the code.

Value : 0, 41, 44, 88, or 94. I don’t have a clue what these values do yet. I suspect they control the behaviour of the tag.

Direction : 0 - South, 256 - East, 512 - North, 768 - West.

�
FUTUREPED <ped type> <direction (probably)>

This will place a pedestrian on the map at a future date. The code must request that the pedestrian is enabled. The ‘optional 1’ may or may not be used. The co-ordinates for the pedestrian are where you want them to appear * 64. e.g. Co-ordinates (1,2,3) would actually be (64,128,194). For the shooting and moving pedestrians I suspect that a target needs to be given to them.

Ped type (the ones I have figured out) :

Value�
Description�
�
0�
Standing ped.�
�
1�
Ped shooting pistol�
�
4�
Ped running NW (towards top left of map maybe)�
�
5�
Ped running SE (towards bottom right of map maybe)�
�
8�
Ped shoots then runs�
�
21�
Ped shoots twice, pauses, and then shoots again�
�
24�
Ped shots, then runs for a bit, then shoots a bit more.�
�

Direction (a guess): 0 - South, 256 - East, 512 - North, 768 - West.

DOOR <value> 11 7

This will place a door on the map. The ‘optional 1’ is not used wit this tag.

Value : 0, 1, 2 or 3. May be ‘angle’ of door or something.

PARKED <type of car> <direction of car>

This places a parked car on the map. The ‘optional 1’ is always used. Both the type of car and its direction may be specified. NOTE: The Juggernaut type seems to cause the game to crash.

Types of car :

Value�
Name�
Value�
Name�
Value�
Name�
Value�
Name�
�
0�
Beast GTS�
1�
Bug�
2�
Countash�
3�
Bike�
�
4�
Squad car�
5�
Ambulance�
6�
Repair van�
7�
Juggernaut�
�
8�
Juggernaut�
9�
Coach�
10�
Breakdown truck�
11�
Train�
�
12�
Tram�
13�
Boat�
14�
Penetrator�
17�
Itali�
�
18�
Mundano�
19�
4 x 4�
21�
Stallion�
22�
Taxi�
�
25�
Impaler�
26�
Jugular�
27�
Pickup�
28�
Porka turbo�
�
29�
Cossie�
31�
Bulldog�
33�
Juggernaut�
34�
Challenger�
�
35�
Limo.�
36�
APC�
37�
Tank�
41�
Superbike�
�
42�
Fire truck�
43�
Bus�
44�
Tanker�
45�
TV van�
�
46�
Transit van�
47�
Model car�
54�
Mondano�
50�
Roadster�
�
51�
Love wagon�
53�
Beast GTS�
55�
Mamba�
58�
Postmouth�
�
61�
Speeder�
62�
Porka�
63�
Flamer�
64�
Vulture�
�
65�
Pickup�
66�
Itali GTO�
70�
Regal�
71�
Monster bug�
�
72�
Thunderhead�
73�
Panther�
74�
Penetrator�
75�
LeBonham�
�
76�
Stringer�
77�
F-19�
78�
Brigham�
79�
Stinger Z29�
�
80�
Classic�
81�
29 Special�
82�
Itali GTB�
83�
Hot rod�
�
86�
Limo.�
87�
Impaler�
�
�
�
�
�

Direction : 0 - South, 256 - East, 512 - North, 768 - West.

�
FUTURECAR <type of car> <direction of car>

This places a car on the map when requested by the code. The car does not appear until the code says so. Both the type of car and its angle may be specified. NOTE:The Juggernaut type of vehicle seems to cause the game to crash in some cases. The direction and car types are the same as those used in the PARKED keyword above.

Direction : 0 - South, 256 - East, 512 - North, 768 - West.

SPRAY <value> 0

This places a marker on the map, which when crossed, will cause your car to be ‘sprayed’. The marker on the map is invisible and has nothing to do with the appearence of the spray shop.

Values : 1-6 (I have no idea what they do). It is thought that the value is the direction you need to drive through the spray shop. However, it seems to make no difference if you simply place the sprayshop marker on the map.

BOMBSHOP 0 0

This places a marker on the map which when crossed will cause your car to be fitted with a bomb. The marker is invisible, and fires when driven over.

PLAYER <line number of attached car> <direction faces>

This places the player on the map. The line number of attached car is the line number which places a parked car nearby.

Direction : 0 - South, 256 - East, 512 - North, 768 - West.

HELLS 41 <direction>

This places a hells angel on the map.

Direction : 0 - South, 256 - East, 512 - North, 768 - West.

The following is a list of keywords I have not figured out yet with some notes:

MPHONES <line number of MPHONE command> <number>

This command links multiple phones to missions. This object is always used with the PHONE_TOGG object. It is currently thought that the number value determines the number of phones in the set.

e.g.

194 (124,23,290) MPHONES 10 3

195 (124,23,290) PHONE_TOGG 194 5

PHONE_TOGG <line number of MPHONES line> <number>

I do not have a clue what the <number> part is, but these keywords are used with the MPHONE command to somehow link sets of phones together. The PHONE_TOGG keyword is always given the same position as the MPHONES command. The number keyowrd is currently not understood. I have given it values from 5 to 5000 with no obvious changes in behaviour.

GTA_DEMMAND <number> <number> <-1> 2

CRANE <1 or -1> <direction>

DUM_MISSION_TRIG <line number to execute> <number> <item to check?>

SPECIFIC_DOOR 2 4 <magic number 1> <car ID> <magic number 2>

This creates a door which will only open for a specific car. The magic numbers probably control the speed of the door and its style but I have not yet had time to verify that.

CORRECT_CAR_TRIG <line to execute> <magic number> <ID of car to trigger on>

This creates a trigger which will only fire for the car specified. When the trigger fires, the program starts execution at the line given. I’m not sure what the magic number does, but, it might specify the line the program should goto if the wrong car fires the trigger (Its a guess).

BARRIER <alignment> <type> 0

This places a barrier onto the map. The alignment determines how the barrier is aligned with the 64 pixel tile it is associated with. The type can be either 4 or 7. Both of these types look the same, but I have hunch that one is impassable, and the other can be passed using a police car. It is also possible to sometimes break through a barrier so that a pedestrian can cross it (I’ve done it using a countash on chapter 2 of Liberty City).

Alignment:

0�
Left hand side of position’s 64x64 tile�
�
1�
Right hand side of position’s 64x64 tile�
�
2�
Top of position’s 64x64 tile�
�
3�
Bottom of position’s 64x64 tile�
�

DAMAGE_TRIG <line to goto when triggered> <alignment?>

This trigger is used to destroy buildings and such like. I am fairly certain that a normal trigger could be used just as well as it the line to goto controls the destruction of blocks and such like. There appears to be no difference between this trigger and the ALT_DAMAGE_TRIG.

Alignment:

0�
Left hand side of position’s 64x64 tile�
�
1�
Right hand side of position’s 64x64 tile�
�
2�
Top of position’s 64x64 tile�
�
3�
Bottom of position’s 64x64 tile�
�

ALT_ DAMAGE_TRIG <line to goto when triggered> <alignment?>

This trigger is used to destroy buildings and such like. I am fairly certain that a normal trigger could be used just as well as it the line to goto controls the destruction of blocks and such like. There appears to be no difference between this trigger and the ALT_DAMAGE_TRIG.

Alignment:

0�
Left hand side of position’s 64x64 tile�
�
1�
Right hand side of position’s 64x64 tile�
�
2�
Top of position’s 64x64 tile�
�
3�
Bottom of position’s 64x64 tile�
�

CARBOMB_TRIG <car ID> <line to goto>

This is a trigger which fires when a car bomb is fitted to the car specified.

MOVING_TRIG <car ID> <1 or 0> 4

I think this is a trigger which fires when a car starts to move, but I do not know how the numbers work as yet, or, how the code knows which line to execute.

BASIC_BARRIER <alignment> <type> 0

This places a barrier onto the map. The alignment determines how the barrier is aligned with the 64 pixel tile it is associated with. The type can be either 4 or 7. Both of these types look the same, but I have hunch that one is impassable, and the other can be passed using a police car. It is also possible to sometimes break through a barrier so that a pedestrian can cross it (I’ve done it using a countash on chapter 2 of Liberty City).

Alignment:

0�
Left hand side of position’s 64x64 tile�
�
1�
Right hand side of position’s 64x64 tile�
�
2�
Top of position’s 64x64 tile�
�
3�
Bottom of position’s 64x64 tile�
�

Object identifiers to do:

DUM_PED_BLOCK_TRIG

CARDESTROY_TRIG

GUN_SCREEN_TRIG

GUN_TRIG

CARWAIT_TRIG

MOVING_TRIG_HIRED

CARSTUCK_TRIG

�
Commands

This section runs through the commands available to you as you write code. Where I am unsure of a particular set of parameters I will indicate this.

NOTE: The format of the majority of the commands is as follows:

command <ID of operand> <goto if TRUE> <goto if FALSE> <value> <points>

The goto values seem to have specific behaviour as follows. If the line number is specified then the program continues execution with that line. If the goto value is 0 then the program coninues on to the next line of code. If the goto value is -1 then the program stops (either it is never used i.e. commands that do not have a ‘false’ outcome, or, the program is waiting for a trigger to fire before continuing).

Briefing Commands

There are a whole host of these and they all take pretty much the same parameters. All that changes is the icon used when displaying the message. GTA seems to keep a stack of briefs internally. So, if you receive a briefing (e.g. Get to the phones) and then get another brief (kill dude). When the kill dude brief is cancelled, the Get to the phones brief becomes visible again. Not completely sure about this.

BRIEF 0 <line to goto> 0 <text ID number>

This displays the piece of text specified by the text ID number given. If you do not wish a goto ot occur then set the line to goto to 0.

MESSAGE_BRIEF 0 <line to goto> 0 0 <text ID number>

This displays the piece of text specified by the text ID number given. If you do not wish a goto ot occur then set the line to goto to 0.

MOBILE_BRIEF 0 <line to goto> 0 0 <text ID number>

This displays the piece of text specified by the text ID number given. If you do not wish a goto ot occur then set the line to goto to 0.

SPEECH_BRIEF 0 <line to goto> 0 0 <text ID number>

This displays the piece of text specified by the text ID number given. If you do not wish a goto ot occur then set the line to goto to 0.

P_BRIEF 0 -1 0 0 <text ID number>

This displays a pager message. The Text ID determines what message gets displayed.

P_BRIEF_TIMED 0 0 <time in seconds> <text ID number>

This starts a countdown to zero for the number of seconds specified. The text ID determines the text which is displayed preceding the countdown e.g. Time Left...

CANCEL_BRIEFING <line number of brief to cancel> 0 0 0 0

This cancels a briefing. The briefing is identified by the line number it was displayed at.

FRENZY_BRIEF 0 0 <magic number> <text ID number>

This is a frenzy brief. I’m not sure what the magic number does yet. The Text ID is the message you get with the frenzy pickup.

KF_BRIEF_TIMED 0 0 0 <time in seconds> <text ID number>

This starts a countdown within your pager in much the same way the P_BRIEF_TIMED command does. The Text ID number is the text that gets displaye before the amount of time you have left.

KF_CANCEL_BRIEFING 0 0 0 0 <lline number frenzy brief occured at>

This cancels a frenzy brief allowing you to see whatever briefing you had before the frenzy started.

�
ANSWER <phone ID> 0 <failed to answer line> <delay> <magic number>

This is normally used in conjunction with the timed briefing to give the player so many seconds to answer a phone. The delay determines that time before going to the failure line. It seems to be measured in 10ths of a second. The phone ID is the line number at which the phone was placed on the map. The failed to answer line is the line number to goto if the player fails to answer. The magic number does nothing as far as I can tell. I have set it to loads of different values and it seems to make no difference to anything.

e.g.

205 P_BRIEF_TIMED 0 0 0 18 1500

206 ANSWER 72 0 420 10 2500

This code fragment gives the player 18 seconds to answer the phone. If the player fails then control is passed to line 420 after a delay of 10.

146 ANSWER 44 0 146 30 0

This keeps the phone ringing until the player answers it.

SURVIVE <line to goto> 0 <time> 0

This causes the procedure to pause for the specified amount of time. It essentially introduces a delay. The time seems to be measured in 10ths of a second. It the line to goto is not needed then it should be set to 0. If the line to goto is set to -1, the code simply stops. This is used when waiting for a trigger to fire after kickstarting several monitoring procedures.

ARROW <ID of object to point at> 0 0 0 0

This causes the direction arrow to point at the object specified by its line number. If you want control to pass to a particular line number when the arrow is turned on use the following syntax :

ARROW <object ID> <line number> 0 0 0

ARROWCAR <car ID> 0 0 0 0

This points the arrow at the car specified. If you want control to pass to a particular line number when the arrow is turned on use the following syntax :

ARROW <car ID> <line number> 0 0 0

ARROWPED <pedestrian ID> 0 0 0 0

This points the arrow at the pedestrian specified. If you want control to pass to a particular line number when the arrow is turned on use the following syntax :

ARROW <pedestrian ID> <line number> 0 0 0

ARROW_OFF 0 0 0 0 <number of points>

This turns the arrow off. I’m not sure about the number of points bit, but it seems OK from context (I have not tested it yet). It generally seems to be set to zero. If you want control to be passed to a particular line number when the arrow is turned off then use the following syntax :

ARROW_OFF 0 <line number> -1 0 <number of points>

ARMEDMESS 0 0 0 0 0

This command displayed the fxt message bomb_on. IT is normally used with the SETBOMB command.

e.g.

3540 SETBOMB 297 0 0 6 0

3550 ARMEDMESS 0 0 0 0 0

ADD_A_LIFE 0 0 -1 -1 0

This command gives the player an extra life.

BANK_ALARM_OFF <object ID> -1 -1 0 0

This turns a bank alarm off. In all cases of its use, the object ID is the line number of a DUMMY time on the map.

BANK_ALARM_ON 0 0 -1 <object ID> 0

This turns a bank alarm on. In all cases of its use, the object ID is the line number of a DUMMY time on the map.

BANK_ROBBERY diverse parameters

I’m not sure what this keyword does, but, I think it simply adds 1 to the number of bank jobs the player has done. This keyword is used is several different ways, which are listed below.

BANK_ROBBERY <future car ID> 0 0 <ID of alarm DUMMY>	May turn alarm on

BANK_ROBBERY <future car ID> 0 0 0 0			Probably just continues with next line

BANK_ROBBERY <future car ID> -1 -1 0 0			Probably stops execution at that line

BANK_ROBBERY -1 0 -1 0 0					Probably sets wanted level & contines

This kind of leads me to believe that the guys writing the code didn’t know what they were doing either. The command also seems to trigger an instant wanted rating. I’m guessing though.

CHANGE_PED_TYPE <future ped ID> 0 -1 <type?> <target ID>

This command changes a pedestrian type, and probably activates them as well. The future ped ID is the line number of the pedestrian being changed. The type can be one of the following values : 21, 22, 5, 24, 7, 25, 8, 1, 4, 2. I have not yet figured out what they are. The target ID is generally the player ID, but in some cases is a future car or another pedestrian.

The alternative versions are shown below.

CHANGE_PED_TYPE <future ped ID> -1 -1 <type?> <target ID>

CHANGE_PED_TYPE <dummy ID> <magic number (maybe line number)> -1 0 -1

CHANGE_TYPE <block info ID> 0 0 0 0

This changes the type of the block info at the line number specified. How it knows what to change it to I have no idea.

CHANGE_BLOCK <block info ID> 0 0 0 0

This changes the block specified from whatever it was to something new.

CHECK_CAR <ID of car to check> <line to goto if alive?> <line to goto if dead> -1 0

This command checks the car specified. I thinks that the check is to make sure it has not been destroyed. The goto line parameters seem to be correct from some analysis of the code but I still have a nagging doubt. If the code should simply continue then the lines to goto should be 0.

CLOSE_DOOR <ID of door> <line to goto> -1 0 0

This command closes the door specified. If the program should continue with the next line then the line to goto should be 0.

COMPARE <counter ID> <line to goto if TRUE> <line to goto if FALSE> <compare value> 0

This command compares the value of the counter specified, with that of the comparison figure given. If the values match the the program jumps to the line given (or continues if it is 0). If the numbers are different then the program jumps to the line specified (or continues if it is zero).

CRANE <crane object ID> -1 -1 <crane trigger ID> 0

This command creates a crane.

DEAD_ARRESTED <ped ID> <line to goto if TRUE> <line to goto if FALSE> -1 0

This command checks to see whether the pedestrian (the player is also considered to be a ped) specified is either dead or has been arrested. The program jumps to the given line or continues of the line to goto is 0.

DECCOUNT <counter ID> <line to goto if => <line to goto if not => <comparison number> 0

This command decrements the counter specified and compares it with the comparison number. If the values match then control passes to the line to goto if =. Otherwise control passes to the line to goto if not =. If all values (except the trigger ID) are zero then control passes to the next line. If either of the lines to goto are -1, if that condition occurs then the program simply stops.

DESTROY <target ID> <line number to goto when destroyed> 0 0 <points when destroyed>

This call simply waits for the target specified to be destroyed. The target can be either a car or a ped/dummy. The number of points is given to the player when the target is destroyed. If the line to goto is 0 then the code simply continues with the next line.

DISABLE <trigger ID> <line to goto> 0 0 0

This command disables a trigger. If the line to goto is 0 then control passes to the next command. If the goto line is specified then control jumps to the line given.

DISARMMESS 0 0 0 0 0

This displays the fxt message bomb_off.

DONOWT 0 0 0 0 0

Does nothing.

DOOR_OFF <door ID> <line to goto> 0 0 0

This command turns a door off. If the line to goto is zero then the program continues with the next line. Otherwise execution continues at the line specified.

DOOR_ON <door ID> <line to goto> 0 0 0

This command turns a door on. If the line to goto is zero then the program continues with the next line. Otherwise execution continues at the line specified.

DROP_WANTED_LEVEL <level to drop to?> <line to goto> -1 -1 0

This command is used to reset the players wanted level to zero. I have a sneaky suspicion that the >level to drop to> specifies the number of heads the player should now be wanted for (although in all uses I have looked at so far it has been 0). The line to goto maybe be zero, in which case the program continues with the next line.

ENABLE <trigger ID> <line to goto> 0 0 0

This command enables the trigger specified. If the line to goto is 0 then the program will contine with the next line.

KICKSTART <line to start> <line to goto> -1 -1 -1

This starts another thread of execution starting at the line <line to start>. The line to goto may have one of three values. If it is set to -1, the program simply stops, waiting for a trigger for fire. If it is set to 0 then the program simply continues. If it is set to another line number then the code continues with that line number.

�
KILL_SPEC_PROC <proc to kill> <line to goto> -1 1 0

This command kills the procedure kickstarted at the line number given by the <proc to kill> parameter. If the line to goto is specified program execution continues there. Otherwise, the code simply continues with the next line.

LOCK_DOOR <car ID> <line to goto> -1 -1 0

This locks all? doors so that the specified card cannot drive through the door. An alternative interpretation would be that the doors on the car specified are locked so that passengers cannot leave them. I’m currently not precisely sure exactly what this keyword does. The line to goto determines where the execution of the program continues. If it is 0 then execution continues with the first line.

MISSION_END <line to goto> 0 0 0 <number of points>

This command ends a mission, giving the specified number of points to the player. If the line to goto is 0 then execution of the program continues with the next line, otherwise it continues with the line specified.

MPHONE <number of first telephone> <first briefing line> <how many phones?> <delay?> 0

This command makes multiple phones ring. It is used to make missions available from more than one phone at a time.

STEAL <car ID> <line to goto> 0 <delay> <points when stolen>

This command waits for the player to get into the car specified by its ID. When the car is stolen the program goes to the line specified by <line to goto>. If <line to goto> is zero then execution continues with the next line. The delay is the time before the program resumes execution (I think). The number of points the player receives when the car is stolen may be specified.

WRECK_A_TRAIN <line to goto> 0 -1 -1 <number of points>

This command destroys a train and gives the player the number of points specified.

IS_PED_IN_CAR <ped ID> <line to goto if TRUE> <line to goto if FALSE> <pause> 0

This command checks to see if the pedestrian specified (or the player) is in a car. Program continues at the line specified.

RED_ARROW <target ID> <line to goto> -1 0 0

This command turns the red arrow on, and points it at the target given. If the line to goto is 0 then program execution continues with the next line. If the line to goto is -1 then the program just stops and waits for a trigger for fire.

RED_ARROW_OFF 0 0 0 0 0

This command turns the red arrow off. I would guess that it takes the same parameters as the ARROW command, but this is untested.

INC_HEADS <number of heads> <line to goto> 0 -1 0

This command sets the number of police looking for the player. If the line to goto is specified the program continues at that line given. Otherwise program control passes to the next line.

�
INCCOUNT <counter ID> <line to goto on TRUE> <line to goto on FALSE> <comparison with> 0

This command increments the counter specified and compares the new value with the number given. If the values match then control continues with the line to goto on TRUE, else control passes to the line to goto on FALSE. If no comparision is needed then the value to compare to should be set to -1. The value -1 can be used with the line to goto to make the thread stop. If a counter should simply be incremented with control continuing with the next line then the following syntax should be used:

INCCOUNT <counter ID> 0 0 0 0

SCORE_CHECK <score to reach> <goto if TRUE> <goto if FALSE> 0 0

This command compares the players score with the score to reach. Command passes to the lines specified.

NEXT_KICK <line to start> <line to goto> -1 <line with kickstart to trigger> 0

Th
